
l(_ i!l }_e inse_'te_l-l)ythe editor) ........................... "- ..... I

High Order Numerical Simulation of
Sound Generated by the Kirchhoff Vortex

Bernhard Miiller a *, H. C. Yee b

° Department of Scientific Computing, Information Technology, Uppsala University, P.O. Box 120, S-751 04 Uppsala, Sweden.
(http ://w_. tdb. uu. s_/_bernd/)

b NASA Ames Research Center, Moffett Field CA 94035, USA.

Received: January 2001 / Accepted:

Communicated by: A.Quarteroni

Abstract. An improved high order finite difference meth-
od for low Mach number computational aeroacoustics

(CAA) is described. The improvements involve the con-
ditioning of the Euler equations in perturbation form
to minimize numerical cancellation error, and the use of
a stable non-dissipative sixth-order central spatial dif-

ferencing for the interior points and third-order at the
boundary points. The spatial difference operator satis-
fies the summation-by-parts property to guarantee strict
stability for !inear hyperbolic systems. Spurious high fre-

quency oscillations are damped by a third-order charac-
teristic-based filter. The objective of this paper is to ap-
ply these improvements in the simulation of sound gen-
erated by the Kirchhoff vortex.

1 Introduction

Owing to the high accuracy requirements in the numeri-
cal simulation of acoustic waves, efficient high order nu-
merical methods are most sought after in the emerging

area of computational aeroacoustics (CAA) [28,30]. It
has been shown that for appropriate high order meth-
ods, the number of grid points per wavelength can be

greatly reduced from that of standard second-order spa-
tial schemes [4]. Low dispersive fourth-order or higher or-
der schemes have been shown to be the methods of choice

for linear or weakly nonlinear aeroacoustics in general ge-
ometries. Complex and CPU intensive schemes such as
the fifth or higher-order WENO schemes are generally

considered as the method of choice if complex nonlinear
aeroacoustic problems are involved. The present study
is the first of a series of papers [17,18] in an attempt to

combine several of the new developments [25,5,27,3,19,
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23,22,31-33] in efficient, highly parallelizable high order
non-dissipative spatial schemes with characteristic-based
filters for CAA that exhibit good long wave propagation

accuracy for linear and nonlinear problems [33]. These
papers extend the work of [31-33] for CAA. The goal is
to propose a scheme that minimizes numerical cancel-
lation errors, and improves nonlinear stability and ac-

curacy associated with low Mach number CAA. These
papers utilize the aforementioned new developments in
an incremental fashion in order to validate thc' final ap-

proach.

The final form of our scheme consists of two levels.

From the governing equation level, we condition the Eu-
ler equations in two steps. The first step is to split the
inviscid flux derivatives into a conservative and a non-

conservative portion that satisfies a so-called generalized

energy, estimate [3, 23]. This involves the symmetrization
of the Euler equations via a transformation of variables
that are functions of the physical entropy [7]. This split-

ting of the flux derivatives, hereafter, is referred to as
the entropy splitting. The split form of the the Euler

equations was found to require less numerical dissipation
than its un-split counterpart in association with non-
dissipative spatial central schemes [32,33]. Owing to the
large disparity of acoustic and stagnation quantities in
low Mach number aeroacoustics, the second step is to re-

formulate the split Euler equations in perturbation form
with the new unknowns as the small changes of the con-

servative variables with respect to their large stagnation

values [25]. Nonlinearities and the conservative portion
of the split flux derivatives are retained. This perturba-
tion form was shown to minimize numerical cancellation

errors compared to the original conservation laws [25].

From the numerical scheme level, a stable sixth-order

central interior scheme with a third-order boundary scheme

that satisfies the discrete analogue of the integration-by-
parts procedure used in the continuous energy estimate
(summation-by-parts property (SBP)) is employed [27].
The discrete scalar product is based on a diagonal ma-

trix. If the split form of the inviscid flux derivatives are
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notused,onlylinearstabilityis retained.Characteristic
andnonreflectingboundaryconditions(BCs),if needed,
areimposedat eachtimestep.To suppressthe spuri-
oushighfrequencyoscillationsassociatedwith central
schemes,a modifiedversionof the characteristic-based
filtermethodofYeeet al. [31]isused.Themetricterms
in thegeneralcoordinatetransformationarediscretized
by the samedifferenceoperatorasthe flowvariables
leadingto freestreampreservation(uniformflowconser-
vation)[29]fortheconservativeportionofthesplitequa-
tions.Thetimederivativeis approximatedby a 4-stage
low-storage second-order explicit Runge-Kutta method
with careful treatment of the intermediate BC at the

different stages of the Runge-Kutta method to minimize
loss of time accuracy [2,4,10].

The numerical experiments presented in this paper
consider only the perturbation form of the Euler equa-

tions. Numerical results to gain nonlinear stability (and
further minimize the use of numerical dissipation) via
the entropy splitting will be presented in [17,18].

The numerical method has been applied to the com-

putation of vortex sound. The prediction of vortex sound
has been one of the most important goals in computa-
tional aeroacoustics (CAA), because the noise in turbu-
lent flow is generated by vortices. To verify the high or-
der finite difference method for the 2D Euler equations,
here, we focus on the numerical simulation of a single
Kirchhoff vortex. The Kirchhoff vortex is an elliptical

patch of constant vorticity rotating with constant angu-
lar frequency in irrotational flow. The acoustic pressure
generated by the Kirchhoff vortex is governed by the 2D
Helmholtz equation, which can be solved analytically us-

ing separation of variables [16]. The sound generated by
the Kirchhoff vortex constitutes a new challenging test
case for CAA. It allows to check numerical methods for

the Euler equations on 2D polar grids and to test bound-
ary conditions at the surface of a sound generator and
at the farfield.

The outline of the paper is as follows. The perturba-

tion formulation of the Euler equations [25] is reviewed
in Section 2. The summation-by-parts (SBP) finite dif-
ference operator is reviewed in Section 3. The analytical
solution for the sound generated by the Kirchhoff vortex
is described in Section 4. Numerical results are compared

with the analytical solution in Section 5.

2 Perturbation Formulation of the Euler

Equations

In low Mach number aeroacoustics, the changes in pres-

sure, density, etc. are much smaller than their reference
values. For example, the acoustic pressure p_ is usually
many orders of magnitude lower than the stagnation

pressure Po. Computing small differences of large num-
bers on the computer leads to cancellation. The pertur-
bation formulation introduced in [25] is used to minimize
numerical cancellation error for compressible low Mach

number flow. The Euler equations are expressed in terms
of the changes of the flow variables with respect to their

stagnation values. Since the velocity in stagnant flow is

zero and the stagnation conditions are constant, the Eu-
ler equations in perturbation form can be written as

Op'
O---t"+ V- (pu)' = 0, (1)

0(pu)'
0----7--+ v. (pu)'u' + Vp' = 0, (2)

O(pE)'
0---_-- + V. ((pg)'u' + (pY)0u') = 0, (3)

where

p_ = P - Po,

u'= (pu)'
Po + P"

(pu)' = pu, (pE)' = pE - (pE)o ,

1 I

P' = (3' - 1)[(pE)' - _(pu) • u'],

(pH)' = (pE)' +/.

Here, p denotes the density, u the velocity, E the total
energy per unit mass, H the total enthalpy, and 7 = 1.4
the ratio of specific heats for air at standard conditions.
The "f' and subscript "0" denote perturbation and stag-
nation variables, respectively.

Although the present formulation is mathematically
identical with the conventional conservative form, dis-

cretizing e.g. Vp leads to cancellation errors, whereas
these errors are avoided when discretizing Vp'. In Carte-

sian coordinates, the perturbed 2D Euler equations can

be expressed as

0U' 0F i c3F_
Ot + _x + coy -- O, (4)

where

u' = (pu)' (pu)'u' + p'
l(p ), I'
\ (pE)' (pg)'u' "-t-(pH)ou' /

( (pv)' \
)'v' I

F_ = (pv)'v' + p' ] "

(pH)'v' + (pH)ov' ]

Here, u I = u is the x-direction velocity and v _ = v is the

y-direction velocity.
For the treatment of general geometries, a coordi-

nate transformation (x(_, _7), y(_, 7)) is used. The result-

ing transformed 2D Euler equations are

001 _0 (5)
o--/-+ -+ 0,7 '
where

I) 1 = j-IU1,

F'l = j-1_ F 1 -1 '

_._ J-' F 1= r/_ 1 + J-1T/yF'_

with the Jacobian determinant of the transformation
j-_ o_ o___ o= o__ and the metric terms

= _'_ 07 0-"_0_ '

_ OIL Ox
J-lrlz = o¢ , J-lrlu = o-_"



3 Numerical Method

3.1 Summation-by-Parts (SBP) Operator

For linear partial differential equations, well-posedness of
the Cauchy problem or initial-boundary-value problems

(IBVPs) can be proved by the energy method [12,5].
The essential mathematical tool in the energy method
for continuous problems is integration-by-parts

(u,vx) = U(1)Tv(1)- U(0)Tv(0) -- (U=,V). (6)

Here u and v are differentiable d-dimensional real func-

tions on [0, 1] and not to confuse with the u and v veloc-

ities of the 2D Euler equations. The (u,v) = f_ uTv dx

is the L2 scalar product and Ilull 2 = (u,u) denote the
L2 norm.

As an example, we consider the scalar linear advec-
tion equation

ut +cu= = 0, 0 < x < 1, (7)

u(x, 0) = l(x), 0 < x < 1, (s)

u(0, t) = g(t), 0 _<t, (9)

where the wave speed c > 0 is constant. Application of
the product rule and (6) to (7), we obtain the equalities

_llu(-, 011.2= 2(u,,_,) = -2c(u, u=)

= -c(u2(1,t)- u2(O,t)) = -c_(1, t) +cg2(t). (lO)

Note that u T = u for the scalar problem (7). Integra-

tion over a time interval [0, t] shows that the energy

}llu(.,t)ll 2 can be estimated in terms of the initial con-
dition (IC) and BCs. Thus, the problem is well-posed.

For the moment, let's discretized the computational
domain [0, 1] by N+I grid points xj = jh, j = O, 1, ..., N,
with h = l7' Denote v i = vj(t) and w i = wi(t ) as the ap-

proximations of u(xj, t) and o u(xj, t), respectively, and

v = [Vo, vl,...,vx] T and w = [w0, wi,..., wN] T. Kreiss

and Scherer [13], Strand [27] and Carpenter et al. [1]
constructed high order difference operators Q for

w = Qv (11)

such that the summation-by-parts (SBP) property is sat-
isfied, i.e.

(U, Qu)h = UNUN -- UoUo -- (Qu, V)h , (12)

where u,v E IRy+l. The discrete scalar product and

norm are defined by

(u,v)h = hurHv Ilullh = (u,u)h,

where H is a symmetric positive definite (N+ 1) x (N+ 1)
matrix.

We employ the SBP operator, which is third-order
accurate near the boundary and compatible with the
standard sixth-order central difference operator in the

interior. It was derived by Strand [27] and is of the form

l 8 t

}_k=0 djkVk ,j = 0, ..., 5,

(Q,v)j = (Q(_6)v)j

1 8
--_ Zk=0 dN-j,kVN-k

,j = 6,...,N-6, (13)

,j=N-5,...,N,

where (Q(_6)v)i 1 i 3'_" _(_-_Vj+3 -- 2"_Vj+2 "{- "_Vj"I-1 -- 3'Vj--1 +

_vj-2 - _vj-3) is the standard sixth-order central dif-
lrerence approximation of the first derivative. The forms

of the 5 x 9 matrix D = (djk) and matrix H can be
found in [27,3]. Here H is the diagonal matrix defining
the norm of the SBP operator. Since the SBP opera-

tor (13) is based on a diagonal norm, its application to
multi-dimensions is straightforward.

To closely maintain the order of accuracy of the scheme
in curvilinear coordinates, the metric terms are discretized
by the same difference operators as the flux derivatives

in (5). We approximate the _-derivatives _ by the SBP

operator Q_ (13) and the q-derivatives _ by the stan-

dard sixth-order central difference operator qo • In 3D,
the Vinokur and Yee [29] treatment of the correspond-

ing metric terms for freestream preservation is recom-
mended.

In order to not destroy the SBP property, there are
different ways in imposing the physical BCs in conjunc-
tion with the SBP operator to obtain strict linear stabil-

ity [1,20, 21]. The penalty method called "simultaneous
approximation term" (SAT) of Carpenter et al. [1] or
the projection method of Olsson [20,21] are two popular
SBP preservation approaches. Either approach yields a
discrete energy relation similar to the continuous energy
relation. Nonlinear stability can be achieved by applying

the boundary schemes to the in-going characteristic vari-
ables via the entropy splitting form of the inviscid flux
derivatives. For simplicity, we have implemented the in-

going Riemann invariants without the SAT or the pro-
jection operator. We use instead the so-ca!led injection
method, i.e. by imposing them explicitly (cf. section 5)

which might destroy the SBP property.

3.2 Time Integration

The application of the spatial discretization of the per-
turbed Euler equations in transformed coordinates (5)

results in a semi-discrete system of nonlinear ODEs

dU _ R(U), (14)
dt

where U is the vector of the difference approximations

U_,_ and R is the vector of two-dimensional spatial dif-

ference operators operating on _" and with each

r _,,1
element Rj,k = --Jj,k .IQ'F'I + Qo qj,k'_

For efficiency, the ODE system is solved by a multi-

stage method [9]

= atR(U")U(1) U'_ + -a-

0 (2) = u" + -_ a(U(U),

U (3) = U" + _ R(UO-)),

U _+l = U n + At R(U(a)). (15)

This time discretization is of O(At 2) for nonlinear prob-

lems and O(At a) for linear problems. It has the same sta-
bility domain as the classical fourth-order Runge-Kutta
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method. The CFL conditions for the numerical solution
O_ Ou -- _Ou

i _T -r c-_7 = O, c = constant, with periodic IC and BC
are (e.g. t15]):

a < 2.828 for Q(2), a _< 2.061 for Q(4), a _< 1.783

for Q(S), where a = _ is the CFL number and Q(J)
denotes the standard central /th-order finite difference

method. The difference in the phase errors between the
two Runge-Kutta methods will be addressed in a forth-

coming paper.

If Dirichlet BCs are properly treated in time, the sta-

bility limit for a SBP operator with Q(J) in the interior

applied to an IBVP will in general be the same as for

Q(t) applied to a periodic problem, cf. [4], pp. 202-203.
However, since the boundary values of time dependent
Dirichlet BCs lack the 'errors' expected during the dif-
ferent stages of the classical Runge-Kutta method, the
mismatches ruin the normal cancellation of errors to fi-

nal 4th-order accuracy. Instead, the mismatches lead to
O(At) and O(Ax) at the boundary and O(Ax 2) globally
independent of the high order finite difference operator

used. The problem and remedies are discussed in [2,4,
10]. Here, we choose the remedy by, at every intermedi-
ate stages of the Runge-Kutta method, the SBP differ-
ence operator is also employed at the boundary. After the
completion of the full step of the Runge-Kutta method,
the Dirichlet BCs are prescribed. Full accuracy in time

is achieved using this remedy, but the stability condition
becomes more restrictive.

3.3 Characteristic-Based Filter

For long wave propagation of nonlinear systems, even
without shock waves and/or steep gradients present, spu-

rious high frequency oscillations are generated by non-
dissipative central spatial schemes. To suppress these
unresolved waves due to the sixth-order spatial interior

scheme, a modified version of Yee et al. [31] high order
artificial compressibility method (ACM) filter scheme is
used. The ACM filter is based on Harten's ACM [6]
switch but utilized in a different context. In the Yee et al.

[31,32] schemes, one time step consists of one step with
a fourth-order or higher central spatial base scheme. Of-
ten an entropy split form of the inviscid flux derivative
is used along with a post processing step, where regions
of oscillation are detected using the ACM as the sensor,
and filtered by adding the numerical dissipation portion

of a shock capturing scheme at these parts of the so-
lution. The idea of the scheme is to have the spatially

higher non-dissipative scheme activated at all times and
to add the full strength, efficient and accurate numeri-
cal dissipation only at the shock layers, steep gradients
and spurious oscillation parts. Here we employ a simi-

lar procedure except we simplified the filter by removing
the limiter. Since the present application is for low Mach
number CAA, the limiter which is designed for captur-

ing discontinuities is not necessary. Another simplifica-
tion for low Mach number CAA consists in using the
arithmetic average instead of the Roe average.

rot :

Xv

Fig. 1. Kirchhoff vortex.

At the completion of a full step of the Runge-Kutta
ITln+l

method, the numerical solution _j,k is filtered by

I._T'n + 1 ITtn+ 1 /3 IT']n+1 (16)j,k = _j,k -- �it Jj,k [DcU' + _,7_ Jj,k ,

where we use the third-order operator

D_U'_, k = _ a_ I&l_ a_"_ u' j,k

with the difference operator 5_aj,k = aj+l/2,k--aj-1/2,k.
For our numerical experiments, the filter coefficient a in

the range of 0 < a <_ 0.05 exhibits the desired prop-
erty. The Jacobian matrix of the flux in the _-direction

can be diagonalized as _u = R_A_R_ -1"

The columns of R_ are the right eigenvectors of _u and

may be found in [29]. The eigenvalues of _u define the

diagonal matrix A_ = diag(u_ - c_, u_, u_, u_ + c¢),
where u_ = uJ-l_, + vJ-l_, and

c_ = Cv/( J-l _=) 2 + (j-1_)2 .

DoV_j,k is defined analogously. Whether a characteristic
filter instead of a scalar filter is absolutely necessary will

be addressed in a future paper.

4 Analytical Solution for Kirchhoff Vortex
Sound

The Kirchhoff vortex is an elliptical patch (Fig. 1) with

semi-major axis a and semi-minor axis b of constant vor-
ticity V × u = (0,0,w)T rotating with constant angu-

ab
lar frequency 12 = _-4-_w in irrotational flow [11]. The
2D flow field constitutes an exact solution of the 2D in-

compressible Euler equations [14]. The acoustic pressure
generated by the Kirchhoff vortex is governed by the 2D
Helmholtz equation, which can be solved analytically us-

ing separation of variables [16].
The normal velocity for an almost circular Kirchhoff

vortex, i.e. a = R(1 + e), b = R(1 - e), 0 < e << 1, can

be approximated by [16]

u- n _ 2R_12 sin(2(O - _t)). (17)

Assuming a harmonic time dependence at the angular

frequency 212 for the acoustic pressure

p'(r,O, t) = _(r, O)e -i2_t,



reduces the wave equation to the Helmholtz equation

k2_5 + zlp = 0.

with wave number k = 2_/Co. Separation of variables

yields the solution for the Helmholtz equations

p'(r,O, t) = _(AH_ 1)(kr)e_(2(e-at))), (18)

where _(z) denotes the real part of a complex number z.

H_ 1) is the Hankel function of 2nd order. The constant

A - p°4Re_2

kH_l)'(kR)

is determined by the radial momentum equation

Our Op'

Po Ot Or

using the normal velocity (17) of the Kirchhoff vortex.
In [16], the farfield approximation of (18) for kr >> 1
is shown to coincide with the farfield approximation de-
rived with Green's function [8], pp. 126-128.

An almost circular Kirchhoff vortex generates a sim-
ilar sound field as an almost circular rotating imperme-

able ellipse [24].

The exact solution of the 2D linearized Euler equa-
tions for sound generate d by the Kirchhoff vortex is de-
termined by means of the exact solution of the Helmholtz

equation (18). The velocity is computed by

u = V_,

where the velocity potential _ is obtained from the rela-
tion

Integrating over time and using (18), we get

_(r,/_, t) 1 f/ t= --- p'(r, _, r)dr
Po J

= -p_o_(AH_ 1) (kr)__-_ei(2(°-_t))).

For isentropic flow, the density perturbation is obtained
from

p, = I p,.

5 Numerical examples

In this section we illustrate the accuracy of the high order

method by several numerical examples.

5.1 Rotating Kirchhoff Vortex

We consider a Kirchhoff vortex with radius R -- 2m,

e = 0.00125, (2 = 82.5_. The stagnation conditions are

po = 1.3_-q_,k co -- 330-_. Thus, the Helmholtz number
becomes 74 = kR = 2Y-2R/co = 1.

A polar grid of mildly stretched near the Kirchhoff
vortex in the radial direction, and uniform in the circum-
ferential direction of 129 x 24 is used. The periodic BCs in

the circumferential direction are implemented by 6 over-

lapping grid points. The exact solution of the linearized
Euler equations (cf. Section 4) is prescribed as the IC.
At the circle r = R and at the farfield r = 64.375m,

characteristic BCs are imposed after the completion of
a full step of the Runge-Kutta method. With the den-

sity, velocity and pressure non-dimensionalized with ref-
erence quantities Po, Co and pock, respectively, the Rie-
mann invariants can be expressed as p, _ un, p' -p', u,

and p_ + u.. Here, u_ is the normal velocity and ut is
the tangential velocity. The in-going Riemann invariants
are prescribed using the exact solution of the linearized

Euler equations, while the outgoing Riemann invariants
are taken from the numerical solution computed at the

boundary. For example, at r = R, if c > un > 0 then
p' - = (p' - p' - p' = (p' - = 0,
ut = (ut)_ct and p' + un = (p' + un)_ct. If -c < u,_ <_
0, the Riemann invariants for the acoustic waves are un-

changed, while those for the entropy and vorticity waves
become p' - p' = (p' - P')computed and ut = (ut)computea.

At the time T = 200 with the non-dimensional time

step At = 0.15, the Kirchhoff vortex has rotated 7.5ra-
dians. Figures 2 and 3 show the computed solution along
the positive x-axis. The solution without the filter com-

pares well with the exact solution of the linearized Euler
equations, except near x = 5, where high frequency oscil-
lations are visible. These spurious oscillations are elim-

inated by applying the characteristic-based filter with
= 0.025. The filtered and the exact solutions agree

up to plotting accuracy. The error in the acoustic pres-
sure in Fig. 3 illustrates that the high frequency oscilla-
tions without filter are indeed eliminated by the filter,

except in the vicinity of the boundaries. With larger _.,
e.g. _ = 0.05, the deviations near the boundaries slightly
increase. It is noted that while the characteristic length

scale was chosen as L =lm in the computation, we use

R = 2m in the plots, i.e. x = _ in the computation,
*" in thewhere x* is the x-coordinate in m, and x = _--

plots, p in the plots corresponds to the non-dimensional
acoustic pressure p'.

5.2 Kirchhoff Vortex Started Instantaneously

In section 5.1, a Kirchhoff vortex rotating forever was
considered. In this section, the same problem is com-

puted with the IC of the Kirchhoff vortex starting in-
stantaneously from stagnation conditions. The ICs are

p_ = u' = v' = p_ = 0, except for the circle r = R, where
the exact solution of the 2D linearized Euler equations

for sound generated by the Kirchhoff vortex of Section
4 is prescribed at t = 0. At the circle r = R, we use the
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Fig. 3. Influence of filter on error of acoustic pressure for
7l = 1, e -- 0.00125, rotated angle = 7.5tad.

same characteristic BCs in Section 5.1. At the farfield,

we now use nonreflecting BCs. The implementation pro-
cedure is, after the completion of a full step of the Runge-
Kutta method, the in-going Riemann invariants for stag-
nation conditions are prescribed. This means that, at the
subsonic farfield boundary p' - u,_ = 0 is imposed. For

un < 0, p' - p' = 0 and ut = 0 are imposed as well.
The analytical solution of Section 4 is not valid for

the instantaneously started Kirchhoff vortex. It is only
valid for a Kirchhoff vortex which has been rotating
forever. However, since no wave is travelling from the
farfield towards the Kirchhoff vortex, as long as we have

stagnation conditions in the farfield, we can assume that
the analytical solution for the Kirchhoff vortex rotat-

ing for infinitely long time is valid up to the wavefront
of the instantaneously started Kirchhoff vortex. If the
wavefront has left the domain without reflection at the

farfield, the analytical solutions for the instantaneously

10

>- 0

-10

A¢o._¢ pmMunl, H. k R. t, ¢.0.00125, mlakKI ong_ - 7.5 md

l0 1 ! i0 L- i-2 -10 0 t 20 30

x

4O

Fig. 4. Acoustic pressure contours without filter for instan-
taneously started Kirchhoff vortex with 7-/= 1, • = 0.00125,
rotated angle = 7.5tad.

started Kirchhoff vortex and for the infinitely long ro-

tating Kirchhoff vortex should agree.

Figures 4-6 show the effect of the characteristic-based
filter when the wave front has reached r _ 16 (at time

T = 200, At = 0.15). The numerical solution without fil-
ter exhibits spurious oscillations whereas the characteristic-
based filter with n = 0.025 agrees well with the analyti-
cal solution between r = 1 and r _ 14. Their difference

in accuracy is more apparent from the acoustic pres-
sure shown in Fig. 6 At x -_ 16, we see that in general
the wavefront cannot match the infinitely long rotating
Kirchhoff vortex solution, because the instantaneously

started Kirchhoff vortex has zero acoustic pressure down-
stream of the wavefront. The discrepancies between the
numerical solution for the instantaneously started Kirch-

hoff vortex and the analytical solution for the infinitely
long rotating Kirchhoff vortex are therefore, have phys-
ical reasons.

Next, we consider the same instantaneously started
Kirchhoff vortex as before, but computes for a longer
time. After the time reaches 500 (same At = 0.15), the
Kirchhoff vortex has rotated 18.75 radians. Now, the

wavefront is at r _ 38.5. If the wavefront were reflected

at the farfield r = 32.1875, we should see it at r _ 25.875.

The computed acoustic pressure along the positive x-axis
shown in Fig. 7 is in excellent agreement with the an-
alytical solution, if the characteristic-based filter with
n = 0.025 is used. Without the filter, spurious oscilla-
tions can be clearly seen. It is interesting to note that

even without the filter, the wavefront generated at t = 0
by the Kirchhoff vortex has passed through the farfield
without visible reflection. The quadrupole structure of

the acoustic pressure is correctly recovered by the high
order SBP operator with the characteristic-based filter

(to = 0.025). See Figs. 8 and 9 for the comparison.
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6 Conclusions

A spatially high order summation-by-parts (SBP) differ-
ence operator [27] has been used to solve the 2D Euler
equations in perturbation form [25] for the sound gen-
erated by the Kirchhoff vortex [16]. For the instanta-
neously started Kirchhoff vortex, characteristic and non-

reflecting BCs are imposed at the completion of each full
step of the Runge-Kutta method. Spurious oscillations
are eliminated by a characteristic-based filter similar to

[31].
In order to gain nonlinear stability for the nonlinear

Euler equations in the hope of further minimizing the
use of numerical dissipation, future work includes the

use of the entropy splitting form of the Euler equations
before the application of the perturbation form. The

10 d

x

Fig. 7. Comparison of acoustic pressure for instantaneously
started Kirchhoff vortex with 74 = 1, • = 0.00125, rotated

angle = 18.75rad.
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Fig. 8. Acoustic pressure contours with filter for instanta-

neously started Kirchhoff vortex with 7/ = 1, e = 0.00125,

rotated angle = 18.75rad.

wavelet filter sensors [26] and other possible problem-
independent coefficients of the characteristic-based filter

will be sought.
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